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Unit – 2: Diffraction 

Importance of Diffraction in Engineering 

Diffraction of light is an important physical phenomenon in engineering, with significant 

applications across various fields. Diffraction occurs when light waves encounter an obstacle or 

aperture and bend around it, leading to interference patterns.  

Diffraction of light plays a pivotal role in various engineering disciplines, driving innovation and 

advancement in diverse technologies. Its significance is evident in optical communication 

systems, laser technology, imaging systems, optical data storage, display technology, 

spectroscopy, photonics, microscopy, optical sensors, and nanotechnology. Understanding 

diffraction enables the development of high-precision laser systems, improved imaging 

instruments, and enhanced optical data storage capacity. Furthermore, it informs the design of 

photonic devices, nano-optical structures, and advanced sensors. As research continues to push 

the boundaries of diffraction limits, future engineers can explore exciting prospects, such as 

harnessing diffraction for ultra-high-resolution imaging, developing novel optical materials, and 

creating more efficient optical communication networks. Studying diffraction in engineering also 

opens doors to emerging fields like quantum optics, metamaterials, and optogenetics. As 

technology advances, the importance of diffraction will only continue to grow, making its study 

a vital investment for the next generation of engineers seeking to revolutionize fields like 

telecommunications, healthcare, and energy.  
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Diffraction 

 

 

When light passes through a narrow slit with a width similar to its wavelength, it spreads out well 

beyond the expected shadow and creates a pattern of alternating light and dark bands. This 

happens because light behaves like a wave, bending around the edges of openings or obstacles. 

This bending, which causes light to enter regions that would normally be in shadow, is called 

diffraction. Because of diffraction, the edges of shadows appear blurred rather than sharp, as 

would be expected if light traveled in straight lines. Diffraction is most noticeable when the object 

causing it is about the same size as the wavelength of the light. Diffraction is commonly studied 

using slits with narrow openings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Light's straight-line travel creates sharp shadows, yet tiny obstacles reveal its wave-
like bending through diffraction. This curvature defies geometric shadows. This phenomenon, 
known as diffraction, demonstrates light's ability to curve around edges, defying straight-line 
travel.1 

 

2.1 Introduction to Diffraction of Light 
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Figure 2.2. Examples of diffraction of light: (a) bending of light through corners of a door, (b) 
light diffraction through clouds, (c) single slit diffraction.2 

 

2.1.1 Fresnel and Fraunhofer Diffraction 

Fresnel and Fraunhofer developed distinct diffraction theories. Fresnel Diffraction considers 

finite distances between source, slit, and screen, while Fraunhofer Diffraction assumes infinite 

distances. 

 

 

Figure 2.3. Schematic diagrams for (a) Fresnel diffraction and (b) Fraunhofer diffraction.3 
 

Table 1 presents a comparative analysis of Fresnel and Fraunhofer diffraction, highlighting their 

primary differences. 
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Table 2.1. Qualitative comparison between Fresnel and Fraunhofer diffraction. 

 

 

 

 

Diffraction occurs when coherent light waves are incident on an opaque barrier, B, which has an 

aperture of any shape. The diffraction pattern is observed on screen C, and the nature of the 

pattern depends on the distance between the source, the aperture, and the screen. There are 

three cases to consider: 

1. Very small separation: When screen C is very close to aperture B (regardless of the distance 

from the source), the light travels only a short distance after passing through the aperture, 

with minimal spreading of the rays. In this case, diffraction effects are negligible, and the 

pattern on the screen is simply the geometrical shadow of the aperture. 

2. Both the source and screen are far from the aperture: When both the source (S) and the 

screen (C) are far away, the incoming and outgoing wavefronts are flat, meaning the light rays 

Fraunhofer DiffractionFresnel DiffractionS. No.

Distance of slit from source and screen is infinite.Distance of slit from source and screen is
finite.

1.

Wavefront incident on the slit is plane.Wavefront incident on the slit is spherical or
cylindrical.

2.

Wavefront incident on the screen is plane.Wavefront incident on the screen is spherical
or cylindrical.

3.

There is no path difference between the rays before
entering the slit.

There is path difference between the rays
before entering the slit which depends on the
distance between the source and the slit.

4.

Path difference depends only on the angle of
diffraction. Hence, mathematical treatment is
relatively easier.

Path difference between the rays forming the
diffraction pattern depends on distance of slit
from source as well as the screen and the
angle of diffraction. Hence, mathematical
treatment is complicated.

5.

Lenses are required to observe Fraunhofer
diffraction in the laboratory.

Lenses are not required to observe Fresnel
diffraction in the laboratory.

6.

2.2 Diffraction at a Single Slit  
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are parallel. This condition can be achieved using two converging lenses, and the type of 

diffraction observed in this case is called Fraunhofer diffraction (Figure 2.4.). 

 

Figure 2.4. Fraunhofer diffraction.3 

3. When S and C are at a finite distance from the aperture, the incident and emerging wavefronts are 

spherical or cylindrical. The diffraction observed in this case is known as Fresnel diffraction (Figure 

2.5.). 

 

Figure 2.5. Fresnel diffraction.3 

2.2.1 Fraunhofer Diffraction at a Single Slit (Qualitative) 

To observe Fraunhofer diffraction through a single slit, consider a point source of light S 

positioned at the focal point of lens L1. A second lens, L2, is positioned beyond the slit to focus 

the parallel diffracted rays onto a screen located at the focal plane of the lens (Figure 2.6).  
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Figure 2.6. Schematic of Fraunhofer diffraction.3 

The parallel rays from source S hit the single-slit AB of slit width a. Each point along the slit AB 

acts as a source of secondary wave disturbances, emitting secondary waves in all directions. After 

passing through lens L2, the diffracted rays at an angle θ are brought into focus on the screen 

(Figure 2.7).  

 

Figure 2.7. Fraunhofer diffraction through a single slit AB.3 

 

The path difference between extreme rays from the slit is: 

Δx = BC = AB sin θ = a sin θ 

The phase difference between the rays: 

𝜑 =
2𝜋

λ
𝑎 sin θ 

The slit of width a is now divided into narrow strips, each with a width of Δd (meaning the 

distance between the strips is also Δd). These narrow strips can be thought of as sources of 

Huygens wavelets, and all the light from each strip arrives at a point on the screen at the same 
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phase. Thus, the phase difference between the waves reaching the point on the screen from two 

adjacent strips remains constant. Thus, the phase difference is: 

𝛥𝜑 =
2𝜋

λ
𝛥𝑑 sin θ 

To determine the resultant intensity, we represent wave disturbances as vectors and perform 

vector addition. N vectors of length ΔE0 are arranged head-to-tail, with successive vectors rotated 

by Δϕ, and then combined using vector addition to determine the resultant phasor amplitude 

(Figure 2.8). 

 

Figure 2.7. Phasor diagram to calculate the intensity in single-slit diffraction.3 

From the diagram,  

𝛼 =
𝜑

2
=

𝜋

𝜆
𝑎 𝑠𝑖𝑛𝜃 

Resultant amplitude for diffraction from a single slit: 

𝑬𝜽= 𝑬𝒎
𝐬𝐢𝐧 𝜶

𝜶
 

𝑬𝜽
𝟐=𝑬𝜽

𝟐(
𝐬𝐢𝐧 𝜶

𝜶
)2 

𝑰𝜽= 𝑰𝒎(
𝐬𝐢𝐧 𝜶

𝜶
) 2 
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2.2.1.1. Condition for Principal Maxima 

𝑬𝜽= 𝑬𝒎
𝐬𝐢𝐧 𝜶

𝜶
=

𝑬𝒎

𝜶
[𝜶 −

𝜶𝟑

𝟑!
+

𝜶𝟓

𝟓!
−

𝜶𝟕

𝟕!
+ ⋯ ] 

𝑬𝜽 = 𝑬𝒎 [𝟏 −
𝜶𝟐

𝟑!
+

𝜶𝟒

𝟓!
−

𝜶𝟔

𝟕!
+ ⋯ ] 

For Eθ to be maximum, α=0 

𝜶 =
𝝅

𝝀
 𝒂 𝒔𝒊𝒏 𝜽 = 𝟎 

Since, slit width, a cannot be zero, therefore value of 𝛼 can be zero only when 𝑠𝑖𝑛 𝜃 = 0 

∴ θ = 0 

Therefore, the principal maxima are formed along the incident direction and is also called the 

central maxima (Figure 2.8). 

2.2.1.2. Condition for Principal Minima 

For minimum intensity, Iθ=0 

∴   𝑰𝒎(
𝐬𝐢𝐧 𝜶

𝜶
)2 = 𝟎 

𝛼 ≠ 0 because the expression (
sin 0

0
) is mathematically undefined and the limit would be an 

indeterminate form (0/0). 

∴ 𝒔𝒊𝒏 𝜶 = 𝟎,  𝒃𝒖𝒕 𝜶 ≠ 0  

∴  𝜶 = 𝒏𝝅,   n=±1, ±2, ±3, … 

𝝅

𝝀
 𝒂 𝒔𝒊𝒏 𝜽 = 𝒏𝝅 

∴ 𝒂 𝒔𝒊𝒏 𝜽 = 𝒏 𝝀 

The minimum intensities are formed at angles: 

𝜽 = sin-1 
𝒏𝝀

𝜶
,   n=±1, ±2, ±3, … 
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2.2.1.3. Condition for Secondary Maxima 

A secondary maximum refers to the peak intensity occurring between two consecutive minimum 

intensities. Secondary maxima are formed under the following condition: 

𝜶 = ± (𝒏 +
𝟏

𝟐
) 𝝅,   𝒏 = 𝟏,  𝟐,  𝟑,  … 

∴  
𝝅

𝝀
 𝒂 𝒔𝒊𝒏 𝜽 = (𝒏 +

𝟏

𝟐
) 𝝅 

𝒂 𝒔𝒊𝒏 𝜽 = (𝒏 +
𝟏

𝟐
) 𝝀 

As, 𝑰𝜽= 𝑰𝒎(
𝐬𝐢𝐧 𝜶

𝜶
)2 

𝑰𝜽= 𝑰𝒎[
𝒔𝒊𝒏(𝒏+

𝟏

𝟐
)𝝅

(𝒏+
𝟏

𝟐
)𝝅

]2 

𝒔𝒊𝒏 (𝒏 +
𝟏

𝟐
) 𝝅 =  ± 𝟏 

∴ [𝒔𝒊𝒏 (𝒏 +
𝟏

𝟐
) 𝝅]2   = 1 

As,   𝑰𝜽 =
𝟏

(𝒏+
𝟏

𝟐
)𝟐𝝅𝟐

𝑰𝒎 

∴    
𝑰𝜽

𝑰𝒎
=

𝟏

(𝒏+
𝟏

𝟐
)

𝟐
𝝅𝟐

 

  ,      n= 1, 2, 3, …  

𝑰𝜽

𝑰𝒎
= 𝟎. 𝟎𝟒𝟓𝟎, 𝟎. 𝟎𝟏𝟔𝟐, 𝟎. 𝟎𝟎𝟖𝟑, … 

As a consequence, secondary maxima show a marked decline in intensity. 

2.2.1.4. Intensity Pattern due to Single Slit 

Figure 2.8 illustrates key characteristics of diffraction intensity: 

 Maximum intensity occurs along the incident direction. 

 Intensity drops to zero at α = ±π on either side of the central maximum. 
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 Alternating secondary maxima and minima emerge beyond this point. 

 Secondary maxima intensity decreases sharply with distance from the center. 

 

 

 

 

 

 

 

 

Figure 2.8. Intensity distribution in single-slit experiment.3 

 

Numericals: Example and Practice Problems: Fraunhofer Single Slit Diffraction 

Example: A slit of width ‘a’ is illuminated by white light. For what value of ‘a’ will the first minimum for 

red light ( = 650 nm) fall at  = 30°? 

Sol: Given: 

 = 30°, n=1,  = 650nm 

Also, a sin  = =n 

∴ a = 
𝑛𝜆

𝑠𝑖𝑛 𝜃
 

Putting the values in the above formula: 

a = 
1×650 𝑛𝑚

0.5
= 1300 nm 

Problems: 

2.2.1. A slit of width ‘a’ is illuminated by white light. For what value of ‘a’ does the minimum for 

red light ( = 650 nm) fall at  = 15°? (Ans: a= 2.50 μm) 
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2.2.2. Calculate the angular separation between the 1st order minima on either side of central 

maxima when the slit is 6×10-4 cm wide and λ=600 nm. (Ans: =5.74°) 

2.2.3. A single slit of diffraction pattern is formed using white light. For what wavelength of light 

does the 2nd minimum coincide with the 3rd minimum for the wavelength 400 nm? (Ans: = 600 

nm) 

2.2.4. Find the half angular width of the central maximum in the Fraunhofer diffraction pattern 

of a slit of width 12×10-5 cm, when illuminated by light of wavelength 600 nm. (Ans: 𝜃 =30°) 

2.2.5. A slit of width 2 μm is illuminated by light of wavelength 650 nm. Calculate the angle at 

which the 1st minimum will be observed. (Ans: 𝜃 = 18.97°) 

2.2.6. A monochromatic light of wavelength 550 nm is incident normally on a slit of width 2×10-

4 cm. Calculate the angular position of 1st and 2nd minimum. (Ans: θ1=15.96° and θ2=33.37°) 

 

 

 

A diffraction grating is an optical component with a pattern of closely spaced lines or grooves 

that diffract light into several directions. When light waves encounter the grating, they are bent, 

or diffracted, at different angles depending on the wavelength (color) of the light and the spacing 

of the grooves. This phenomenon causes the light to spread out into its spectrum, making 

diffraction gratings useful for analyzing and separating different wavelengths. 

Types of diffraction grating 

There are several types of diffraction gratings, each designed for different applications based on 

how the light interacts with the grating structure. Out of many, only two main types will be 

discussed here. 

2.3 Diffraction Grating  
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1. Transmission Grating: A transmission diffraction grating has grooves or lines etched onto 

a transparent material like glass. When light passes through the grating, it diffracts at 

different angles depending on the wavelength. These are used in Spectroscopy, 

wavelength separation, and optical analysis where transmitted light is needed. 

2. Reflection Grating: A reflection diffraction grating has grooves or lines etched onto a 

reflective surface, typically metal or coated glass. Light is diffracted by reflecting off the 

surface, rather than passing through it. 

 

Figure 2.9. Schematic diagrams of reflection and transmission grating.4 

2.3.1 Plane Diffraction Grating 

A plane diffraction grating is a flat optical device consisting of a large number of equally spaced, 

parallel grooves or slits etched or ruled on a surface (such as glass or metal). When light passes 

through or reflects off this grating, it is diffracted, causing the light to spread out into its 

constituent wavelengths. This diffraction leads to the formation of a spectrum, making plane 

diffraction gratings highly useful for analyzing the composition of light. 
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Figure 2.10. (a) A standard laboratory diffraction grating, (b) schematic of the diffraction 
grating having slits separated by opaque spaces, (c) diffraction pattern from a plane grating.5 

Let, 

a = width of each slit 

b = width of each opaque space 

N = total number of lines on the grating 

So, d = a + b = width of a line (grating element) 

1

𝑎 + 𝑏
= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑒𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 

 

Figure 2.11. Schematic of diffraction from diffraction grating. 

 

(a) (b) (c)



                                                                PES’s Modern College of Engineering, Pune 
 

UNIT – 2: DIFFRACTION                                                                                                                                             15 
 

The resultant amplitude: 

𝐸𝜃= 𝐸𝑚(
sin 𝛼

𝛼
)(

𝑠𝑖𝑛 𝛽

𝑆𝑖𝑛𝛽
), where 𝛽 =

𝜋

𝜆
 (𝑎 + 𝑏) 𝑠𝑖𝑛 𝜃 

∴  𝐼𝜃= 𝐼𝑚(
sin 𝛼

𝛼
)2(

𝑠𝑖𝑛 𝑁𝛽

𝑆𝑖𝑛𝛽
)2 

𝐼𝑚(
sin 𝛼

𝛼
)2 is the diffraction term, and (

𝑠𝑖𝑛 𝑁𝛽

𝑆𝑖𝑛𝛽
)2 is the interference term due to ‘N’ slits. 

2.3.2. Condition for Principal Maxima 

The principal maxima occur when sin β = 0, corresponding to β = mπ, where m is an integer (0, 

±1, ±2, ±3, …). 

∴  
𝜋

𝜆
 (𝑎 + 𝑏)𝑠𝑖𝑛 𝜃 = 𝑚𝜋 

∴  (𝑎 + 𝑏)𝑠𝑖𝑛 𝜃 = m𝜆 

For β = mπ, the term 
𝑠𝑖𝑛 𝑁𝛽

𝛽
 becomes indeterminate. 

∴  𝐼𝜃= 𝐼𝑚(
sin 𝛼

𝛼
)2(lim

𝛽
→ 𝑚𝜋

𝑠𝑖𝑛 𝑁𝛽

𝑆𝑖𝑛𝛽
)2 

Using L’Hospital’s rule: 

𝐼𝜃= 𝐼𝑚(
sin 𝛼

𝛼
)2(lim

𝛽
→ 𝑚𝜋

𝑠𝑖𝑛 𝑁𝛽

𝑆𝑖𝑛𝛽
)2 

=𝐼𝑚(
sin 𝛼

𝛼
)2(lim

𝛽
→ 𝑚𝜋

𝑁 𝑐𝑜𝑠 𝑁𝛽

𝑐𝑜𝑠𝛽
)2 

For β=mπ, cos N β=cos Nmπ= ±1 and cos β= ±1 

∴  𝐼𝜃= 𝐼𝑚(
sin 𝛼

𝛼
)2[±𝑁]2 

∴  𝐼𝜃= 𝑁2𝐼𝑚(
sin 𝛼

𝛼
)2 

∴  𝐼𝜃=N2×Intensity due to a single slit 
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2.3.3. Condition for Principal Minima 

For minimum intensity, 𝐼𝜃=0 

∴  
𝑠𝑖𝑛 𝑁𝛽

𝛽
= 0 

∴  𝑠𝑖𝑛 𝑁𝛽 = 0,  𝑏𝑢𝑡 𝑠𝑖𝑛𝛽 ≠ 0 

∴ Nβ = nπ, but β≠l π where n and l are integers. 

∴  𝛽 =
𝑛𝜋

𝑁
, where n/N must not be an integer. 

∴ n= 1, 2, 3,…. (N-1), (N+1), (N+2), ….(2N-1), (2N+1), 

or, n≠0, N, 2N,…. as these values of n give principal maxima. 

As, 𝛽 =
𝜋

𝜆
 (𝑎 + 𝑏) 𝑠𝑖𝑛 𝜃 

 
𝜋

𝜆
 (𝑎 + 𝑏)𝑠𝑖𝑛 𝜃 =

𝑛

𝑁
π 

∴ (𝑎 + 𝑏)𝑠𝑖𝑛 𝜃 =
𝑛

𝑁
λ 

Where, n = 1, 2, 3, …., (N-1), (N+1), (N+2), …, (2N-1), (2N+1),… 

Therefore, there are (N-1) minimum intensities between any two adjacent principal maxima. 

 

Numericals: Example and Practice Problems: Diffraction Grating 

Example: In a plane transmission grating, the angle of diffraction for the second order principal 

maximum for the wavelength 5×10-5 cm is 30°. Calculate the number of lines/cm of the grating 

surface. 

Sol: Given: 

m =2,  = 30°, n=1,  = 5×10-5 cm  

Also, (a+b) sin  = m 
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∴ a+b = 
𝑚𝜆

𝑠𝑖𝑛 𝜃
= 2×10-4 cm 

Number of lines/cm = 
1

𝑎+𝑏
 = 5000  

So, there are 5000 lines/cm. 

Problems: 

2.3.1. What is the longest wavelength that can be observed in the 3rd order for a transmission 

grating having 7000 lines/cm? Assume normal incidence. (Ans: 476.2 nm) 

2.3.2. Monochromatic light of wavelength 656 nm falls normally on a grating that is 2 cm wide. 

The 1st order spectrum is produced at an angle of 16° 12’ from the normal. Calculate the total 

number of lines on the grating. (Ans: total number of lines=8506) 

2.3.3. Monochromatic light from laser of wavelength 623.8 nm is incident normally on a 

diffraction grating containing 6000 lines/cm. Find the angles at which the 1st and 2nd order 

maximum are obtained. (Ans: θ=21.98° (for m=1), θ=48.47° (for m=2)) 

 

 

X-ray Diffraction (XRD) is a versatile, non-destructive analytical technique that has transformed 

the fields of materials science, structural analysis, and engineering. By leveraging the unique 

properties of X-rays, XRD enables researchers and engineers to probe the atomic and molecular 

structure of materials, uncovering critical information about their composition, crystallography, 

defects, and mechanical properties. This insight is invaluable for optimizing material 

performance, reliability, and safety in various engineering applications. In aerospace engineering, 

XRD informs the development of lightweight, high-strength alloys. 

The discovery of X-rays by Wilhelm Conrad Röntgen in 1895 laid the foundation for XRD. 

Röntgen's pioneering work led to the identification of X-rays as electromagnetic radiation with 

wavelengths shorter than visible light. This breakthrough paved the way for Max von Laue's 

groundbreaking experiment in 1912, where he observed diffraction patterns from X-rays 

scattered by crystals. 

2.4 X-ray Diffraction 
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The principle of XRD relies on the diffraction of X-rays by the atomic lattice of a crystalline 

material. X-rays with wavelengths typically ranging from 0.7 to 2.3 Å (Cu Kα: 1.54 Å, Mo Kα: 0.71 

Å) interact with electrons in the material's atomic lattice, resulting in constructive interference 

and diffraction. The diffraction pattern depends on the material's crystal structure, lattice 

parameters (a, b, c, α, β, γ), and atomic positions. 

Bragg's Law, formulated by William Henry Bragg and William Lawrence Bragg in 1913, describes 

the relationship between the interplanar spacing (d), angle of incidence (θ), and wavelength (λ): 

2dsin(θ) = nλ. This fundamental equation forms the basis of XRD data analysis. Modern 

diffractometers employ θ-2θ geometry (Figure 2.12(b)), where the detector moves 2θ while the 

sample moves θ. 

XRD instrumentation (Figure 2.12(a)) consists of an X-ray tube (Cu, Mo, or Cr anodes), 

monochromator, diffractometer, and detector (scintillation counter, proportional counter, or 

semiconductor detector). Data analysis involves identifying peak positions (2θ angle) 

corresponding to d-spacings, peak intensities related to material structure and composition, and 

pattern matching to identify phases and crystal structures. 

 

Figure 2.12. (a) A typical schematic of an XRD instrument, (b) theta-2theta geometry.7 

2.4.1. Crystalline and Amorphous Solids 

Crystalline solids are materials with a highly ordered, three-dimensional atomic arrangement, 

characterized by a repeating pattern of atoms or molecules.  

(a) (b)
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Amorphous solids lack long-range order, with atoms or molecules arranged randomly, 

and lacking a repeating pattern. 

 

Figure 2.13. Schematic of the atomic arrangement in (a) crystalline solid and (b) amorphous 
solid.8 

A comprehensive comparison between the two is presented in Table 2. 

Table 2. A comprehensive comparison between a crystalline and amorphous solid. 

 

2.4.2. Bragg’s Law 

Bragg's Law is a fundamental concept in physics that describes the diffraction of waves by a 

crystal lattice. It explains how waves interact with the atoms in a crystal, leading to constructive 

(a) (b)

Amorphous SolidsCrystalline Solids

Highly irregular in shape.Have definite and regular geometrical shapes.1.

Have a short range of order, that’s why
called disordered or pseudo solids.

Have a long range of orders, that’s why called
ordered or true solids.

2.

Do not have a sharp melting point.Have a sharp melting point.3.

Amorphous solids do not have definite heat
of fusion.

Crystalline solids have definite heat of fusion.4.

Like crystalline solids, they are rigid too but
can be compressed.

Highly rigid and totally incompressible.5.

When cut, they do not give clean and sharp
cleavage.

When cut, they give clean and sharp cleavage.6.

Isotropic and unsymmetrical in nature.Anisotropic and symmetrical in nature.7.

Examples: cotton, glass, thin-film lubricants,
etc.

Examples: table salt, diamond, etc.8.
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interference and diffraction. It is named after William Henry Bragg and William Lawrence Bragg, 

who first proposed it in 1913. 

Bragg’s Law states that when the X-ray is incident onto a crystal surface, its angle of incidence, θ, 

will reflect with the same angle of scattering, θ. And, when the path difference, d is equal to a 

whole number, n, of wavelength, λ, constructive interference will occur.9 

 

Figure 2.14. Illustration of Bragg’s Law. 

Bragg's Law Equation: 

2d sin(θ) = nλ 

Variables: 

1. d: Interplanar spacing (distance between atomic planes) 

2. θ: Angle of incidence (angle between incoming wave and crystal plane) 

3. n: Integer (1, 2, 3, ...) representing the order of diffraction 

4. λ: Wavelength of the x-ray beam 

The crystals tend to behave as reflection-type diffraction gratings due to their periodic atomic 

structure, comprising parallel atomic planes separated by regular distances. This acts as a three-

dimensional array of scattering centres, unlike one-dimensional optical gratings. Crystals diffract 

x-rays similarly to how optical gratings diffract light. When x-rays hit the crystal, it scatters off 

(reflects) the atomic planes at the same angle, creating a pattern (diffraction phenomenon). Since 

x-rays short wavelengths (1-100 Å) are comparable to crystal atomic distances, it enables the 

process of diffraction. This diffraction pattern follows Bragg’s Law, which predicts the angles at 
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which the radiation will scatter. The resulting diffraction pattern reveals information about the 

crystal structure, including its symmetry and defects. 

 

 

Numericals: Example and Practice Problems: Bragg’s Law 

Example: A crystal has a spacing d of 2.5 A˚. If the first-order diffraction (n=1) occurs at an angle 

(θ) of 30∘, what is the wavelength (λ) of the X-rays? 

Sol: Given: 

 = 30°, n=1, d=2.5 Å 

According to Bragg’s Law:  

 nλ = 2d sin(θ) 

∴ 1 × λ = 2 × (2.5×10−10 m) × sin (30°) 

 λ = 2 × (2.5×10−10 m) × 0.5 

λ = 2.5×10−10 m = 0.25 nm 

Problems: 

2.4.1. A crystal has a spacing d of 3.5 Å. If the first-order diffraction (n=1) occurs at an angle θ of 

60°, what is the wavelength λ of the X-rays? (Ans: λ = 6.06 Å) 

2.4.2. X-rays scatter from a metal crystal with spacing d=2.8 Å. If the second-order diffraction 

(n=2) occurs at an angle θ of 75°, what is the wavelength λ? (Ans: λ =2.704 Å) 

2.4.3. A semiconductor material has a crystal spacing d of 2.5 Å. If the wavelength λ of the X-rays 

is 1.2 Å and n=1, what is the angle θ of diffraction? (Ans: λ =13.8°) 

2.4.5. X-rays scatter from a crystal at an angle θ of 45° with wavelength λ=1.0 Å and n=1. What is 

the interplanar spacing d? (Ans: d = 1.41 Å) 

2.4.6. A crystal has a spacing d of 2.9 Å and scatters X-rays at an angle θ of 55° with wavelength 

λ=1.3 Å. What is the order of diffraction n? (Ans: n = 4) 
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The principle of XRD based on the theory of diffraction: 

The principle of X-ray Diffraction (XRD) is rooted in the theory of diffraction, which describes the 

bending of waves around obstacles or the spreading of waves through small openings. According 

to wave-particle duality, X-rays exhibit both wave-like and particle-like behaviour, and as 

electromagnetic waves, they interact with electrons in the atomic lattice of the material. The 

Huygens-Fresnel Principle explains how every point on a wavefront acts as a source of secondary 

spherical waves, leading to constructive and destructive interference. Bragg's Law, derived from 

this principle, relates interplanar spacing (d) to angle of incidence (θ) and wavelength (λ): 2d 

sin(θ) = nλ. This fundamental equation forms the basis of XRD, where scattered X-rays form a 

diffraction pattern due to constructive interference, dependent on the crystal structure of the 

material, lattice parameters, and atomic positions. The mathematical formulation of XRD 

involves the wave equation, Helmholtz equation, and Fourier transform, which relate the 

diffraction pattern to the crystal structure of the material. By analyzing the diffraction pattern, 

researchers can determine the composition of the material, crystal symmetry, lattice parameters, 

and defects. 

2.4.3. Analysis of XRD Spectrum for Cubic System 

In cubic systems (simple cubic, body-centered cubic, and face-centered cubic), the analysis of the 

XRD spectrum helps identify the crystal planes, calculate lattice parameters, and assess crystallite 

size.  

For example, let us consider sodium chloride (NaCl), which has a face-centered cubic (FCC) crystal 

structure. Analyzing its XRD spectrum helps determine important properties like lattice 

parameters, crystallite size, and atomic arrangement. 

NaCl crystallizes in a face-centered cubic (FCC) structure, where the sodium (Na⁺) and chloride 

(Cl⁻) ions alternate in a 3D lattice. Each Na⁺ ion is surrounded by six Cl⁻ ions and vice versa (Figure 

2.15). The lattice constant (distance between atoms) is approximately 5.64 Å (angstroms) for 

NaCl. 
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Figure 2.15. Crystal structure of NaCl.10 

Explanation of how to analyze the XRD spectrum for NaCl: 

 The XRD pattern for NaCl consists of a series of sharp peaks at specific angles, which 

correspond to the reflection from different sets of crystal planes (denoted by Miller 

indices hkl).  

 

 

 

 

 

 

 

 

 

Figure 2.15. XRD spectrum of NaCl crystal.11 

Common reflections in NaCl FCC structure are from planes such as: 

 (111) 
 (200) 
 (220) 
 (311) 
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Key structural parameters to analyze: 

 Position of Peaks: The 2θ values (angle) at which peaks occur correspond to different crystal 

planes. By comparing these angles with standard values from crystallographic databases (like 

the Joint Committee on Powder Diffraction Standards, JCPDS), we can confirm the crystal 

structure. 

 Intensity of Peaks: The intensity of each peak indicates the number of atoms contributing to 

the reflection from that specific plane. Stronger peaks indicate more atoms aligned in that 

plane. 

 Miller Indices (hkl): Each peak corresponds to a reflection from a specific set of atomic planes, 

which is identified by its Miller index (hkl). The order and position of these peaks give 

information about the crystal symmetry. 

 Calculating Lattice Parameter: Using Bragg's Law, we can calculate the lattice parameter a 

(distance between atoms) for NaCl. For an FCC structure, the relation between the plane 

spacing d and the lattice parameter a is: 

𝑑 =
𝑎

√(ℎ2 + 𝑘2 + 𝑙2)
 

 Crystallite Size (Scherrer Equation): The broadening of XRD peaks can be used to estimate 

the crystallite size using the Scherrer Equation: 

𝐷 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
 

Where: 

 D is the crystallite size. 

 K is a shape factor (usually taken as 0.9). 

 λ is the X-ray wavelength. 

 β is the full width at half maximum (FWHM) of the diffraction peak (in radians). 

 θ is the diffraction angle. 
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A smaller peak width (β) indicates larger crystallite size, while broader peaks suggest smaller 

crystallites or more structural disorder. 

  

Matching with Reference Data: Once the XRD spectrum is collected, the 2θ angles of the peaks 

are compared to standard reference patterns (from databases like JCPDS) for NaCl. The match of 

the peaks’ positions and intensities confirms the material’s identity as NaCl. 

  

Figure 2.15. JCPDS data of XRD of NaCl single crystal. 

Now, let us try to confirm the crystal structure of NaCl using the reference data shown in Figure 

2.15. 

Note first three strongest peaks at d1, d2, and d3  

• In the present case: d1: 2.82; d2: 1.99 and d3: 1.63 Å  

• Search JCPDS manual to find the d group belonging to the strongest line: between 2.84-2.80 Å  

• There are 17 substances with approximately similar d2 but only 4 have d1: 2.82 Å  

• Out of these, only NaCl has d3: 1.63 Å  
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• It is NaCl (FCC structure) 

Questions: 

1. Explain the term diffraction of light. What are the types of diffraction? 

2. Differentiate between Fresnel and Fraunhofer diffraction. 

3. Discuss qualitatively, the Fraunhofer diffraction at a single-slit. 

4. The resultant amplitude of a wave when monochromatic light is diffracted from a single slit 

is 𝐸𝜃= 𝐸𝑚(
sin 𝛼

𝛼
). From here derive the condition for minima. 

5. Calculate, approximately, the relative (with respect to central maxima) intensities of the first 

three maxima in the single-slit diffraction pattern. 

6. Derive an expression for the intensity of the diffraction pattern in the case of single-slit, using 

a phasor diagram. 

7. What is diffraction grating? 

8. Derive conditions of maxima and minima of the diffraction pattern for a plane transmission 

grating, starting from the equation of resultant amplitude and intensity. 

9. How would you use a diffraction grating to measure the wavelength of an unknown light 

source? 

10. Differentiate between amorphous and crystalline solids. 

11. Can an amorphous solid exhibit long-range order? Explain. 

12. Compare the diffraction patterns of amorphous and crystalline solid. 

Critical Thinking Questions 

1. What are the limitations of using a diffraction grating for spectral analysis? 

2. How does the material of the diffraction grating affect its performance? 

3. Can diffraction gratings be used to focus light? Explain. 

4. Can Fraunhofer gratings be used for X-ray diffraction? Explain. 

5. Can a material be both amorphous and crystalline? Explain. 
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